Answer:
The value of the equilibrium constant [tex]K_p[/tex] at this temperature is 3.42.
Explanation:
Partial pressure of the sulfur dioxide =[tex]p_1=0.564 atm[/tex]
Partial pressure of the oxygen gas =[tex]p_2=0.102 atm [/tex]
Partial pressure of the sulfur trioxide =[tex]p_3=0.333[/tex]
[tex]2 SO_2(g) + O_2(g)\rightleftharpoons 2 SO_3(g)[/tex]
The expression of an equilibrium constant is given by :
[tex]K_p=\frac{(p_3)^2}{(p_1)^2\times p_2}[/tex]
[tex]K_p=\frac{(0.333 atm)^2}{(0.564 atm)\times (0.102 atm)}=3.42[/tex]
The value of the equilibrium constant [tex]K_p[/tex] at this temperature is 3.42.