Find the equation, (f(x) = a(x - h)2 + k), for a parabola containing point (2, -1) and having (4, -3) as a vertex. What is the standard form of the equation?

Respuesta :

Answer:

[tex]f(x)=\frac{1}{2}x^2-4x+5[/tex]

Step-by-step explanation:

A parabola is written in the form

[tex]f(x)=a((x-h)^2+k)[/tex] (1)

where:

[tex]h[/tex] is the x-coordinate of the vertex of the parabola

[tex]ak[/tex] is the y-coordinate of the vertex of the parabola

[tex]a[/tex] is a scale factor

For the parabola in the problem, we know that the vertex has  coordinates (4,-3), so we have:

[tex]h=4[/tex] (2)

[tex]ak=-3[/tex]

From this last equation, we get that [tex]a=\frac{-3}{k}[/tex] (3)

Substituting (2) and (3) into (1) we get the new expression:

[tex]f(x)=-\frac{3}{k}((x-4)^2+k) = -\frac{3}{k}(x-4)^2 -3[/tex] (4)

We also know that the parabola  contains the point (2,-1), so we can substitute

x = 2

f(x) = -1

Into eq.(4) and find the value of k:

[tex]-1=-\frac{3}{k}(2-4)^2-3\\-1=-\frac{3}{k}\cdot 4 -3\\2=-\frac{12}{k}\\k=-\frac{12}{2}=-6[/tex]

So we also get:

[tex]a=-\frac{3}{k}=-\frac{3}{-6}=\frac{1}{2}[/tex]

So the equation of the parabola is:

[tex]f(x)=\frac{1}{2}((x-4)^2 -6)[/tex] (5)

Now we want to rewrite it in the standard form, i.e. in the form

[tex]f(x)=ax^2+bx+c[/tex]

To do that, we simply rewrite (5) expliciting the various terms, we find:

[tex]f(x)=\frac{1}{2}((x^2-8x+16)-6)=\frac{1}{2}(x^2-8x+10)=\frac{1}{2}x^2-4x+5[/tex]