Respuesta :

Answer:

[tex]x=\pi n, \ \ \ x=\frac{3\pi}{4}+\pi n[/tex]

Step-by-step explanation:

We express the angle x in radians for all possible values of x:

[tex]x=\pi n\\\\x=\frac{3\pi}{n}+\pi n[/tex]

let tan(x)=u:

[tex]u^2+u=0\\\\u(u+1)=0\\\\u=0,\ u=1[/tex]

#Substitute back u=tan(x)

[tex]tan(x)=0 , \ \ \ or \ tan(x)=-1[/tex]

#We assign for all values of x

[tex]tan(x)=0, \ \ \ \ x=\pi n\\\\tan(x)=-1, \ \ \ \ x=\frac{3\pi}{4}+\pi n[/tex]

#Hence, the equation's solutions are:

[tex]x=\pi n, \ \ \ x=\frac{3\pi}{4}+\pi n[/tex]

Otras preguntas