Respuesta :

Answer:

The area of the regular polygon i.e. regular hexagon with a side length of 85 is:

  • [tex]A\approx 18771.10[/tex]

Step-by-step explanation:

By definition, all sides of a regular polygon are equal in length.

We consider the regular hexagon as our regular polygon, as show in attached figure.

As

side length = a = 85

Using formula to find the area of the regular polygon i.e. regular hexagon

[tex]A\:=\:\frac{3\sqrt{3}}{2}a^2[/tex]

[tex]A=\frac{3\sqrt{3}}{2}\left(85\right)^2[/tex]

[tex]\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}[/tex]

[tex]A=\frac{3\sqrt{3}\cdot \:85^2}{2}[/tex]

[tex]A=\frac{21675\sqrt{3}}{2}[/tex]           ∵ [tex]3\sqrt{3}\cdot \:85^2=21675\sqrt{3}[/tex]

[tex]A\approx 18771.10[/tex]

Therefore, the area of the regular polygon i.e. regular hexagon with a side length of 85 is:

  • [tex]A\approx 18771.10[/tex]
Ver imagen SaniShahbaz