Respuesta :

the average rate of change of h is 1/2 .

Step-by-step explanation:

Here we have , a function h(x)=1/8x^3-x^2 or , [tex]h(x)=\frac{1}{8}x^3-x^2[/tex] . We need to find rate of change of function over [tex]-2<x<2[/tex] . Let's find out:

We know that , Rate of change of function is :

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

According to question we have ,

[tex]\frac{f(-2)-f(2)}{-2-2}[/tex]

[tex]f(-2) = \frac{1}{8}(-2)^3-(-2)^2 = \frac{1}{8}(-8)-4 = -5\\f(2) = \frac{1}{8}(2)^3-(2)^2 = \frac{1}{8}(8)-4 = -3[/tex]

[tex]\frac{-5-(-3)}{-2-2}[/tex]

[tex]\frac{-2}{-4}[/tex]

[tex]\frac{1}{2}[/tex]

Therefore ,  the average rate of change of h is 1/2 .