Respuesta :

Answer:

1.5 inches.

Step-by-step explanation:

Let x represent width of the frame.

We have been given that Mikaela places a frame around a print that measures 10 inches by 10 inches. The area of just the frame itself is 69 square inches.

The area of the print would be [tex]10\times 10=100[/tex] square inches.

The side of frame with print would be [tex]10+x+x=10+2x[/tex] because the width will be on both sides.

Area of side of frame with print would be [tex](10+2x)^2[/tex].

Area of the frame will be equal to area of side of frame with print minus area of print.

We can represent this information in an equation as:

[tex]69=(10+2x)^2-100[/tex]

Let us solve for x.

[tex]69+100=(10+2x)^2-100+100[/tex]

[tex]169=(10+2x)^2[/tex]

[tex](10+2x)^2=169[/tex]

Take square root of both sides:

[tex]\sqrt{(10+2x)^2}=\pm\sqrt{169}[/tex]

[tex]10+2x=\pm 13[/tex]

[tex]10+2x=- 13\text{ (or) } 10+2x=13[/tex]

[tex]2x=- 23\text{ (or) } 2x=3[/tex]

[tex]x=-\frac{ 23}{2}\text{ (or) } x=\frac{3}{2}[/tex]

[tex]x=-11.5\text{ (or) } x=1.5[/tex]

Since width cannot be negative, therefore, width of the frame is 1.5 inches.