Respuesta :

Step-by-step explanation:

BC is the bisector of [tex] \angle ABQ[/tex]

[tex] \therefore \angle ABC \cong \angle CBQ..(1)\\

\angle CBQ \cong \angle CAB..(2) \\(\angle 's\: in \: alternate\: segments) \\[/tex]

From equations (1) & (2)

[tex] \angle ABC \cong \angle CAB\\

\therefore AC = BC [/tex]

(Because sides opposite to equal angles are equal)

Hence Proved