NH4Br has a face-centered cubic unit cell in which the Br- anions occupy corners and face centers, while the cations fit into the hole between adjacent anions. What is the radius of Br- if the ionic radius of NH4 is 138.3 pm and the density of NH4Br is 2.429 g/cm3

Respuesta :

Answer:

Ionic radius of the bromide ion is 227.9 pm.

Explanation:

Number of atom in FCC unit cell = Z = 4

Density of ammonium bromide = [tex]2.429 g/cm^3[/tex]

Edge length of cubic unit cell= a= ?

Molar mass of ammonium bromide = 98 g/mol

Formula used :  

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho [/tex] = density

Z = number of atom in unit cell

M = atomic mass

[tex](N_{A})[/tex] = Avogadro's number  

a = edge length of unit cell

On substituting all the given values , we will get the value of 'a'

[tex]2.429 g/cm^3=\frac{4\times 98 g/mol}{6.022\times 10^{23} mol^{-1}\times a^3}[/tex]

[tex]a^3=\frac{4\times 98 g/mol}{6.022\times 10^{23} mol^{-1}\times 2.429 g/cm^3}[/tex]

[tex]a=6.447\times 10^{-8} cm=6.447\times 10^{-8} cm\times 10^{10} pm=644.7 pm[/tex]

Ionic radius of bromide ion = r

To calculate the edge length, we use the relation between the radius and edge length for FCC lattice:

[tex]644.7 pm=2\sqrt{2}r[/tex]

Putting values in above equation, we get:

[tex]r=\frac{644.7 pm}{2\sqrt{2}}=227.9 pm[/tex]

Ionic radius of the bromide ion is 227.9 pm.