Respuesta :
Answer:
1. cone
radius, height = 2, 10
volume = 13.33
2. hemisphere
radius= 14
volume = 1829.33
Step-by-step explanation:
The region described has a radius r=2−y/5, therefore, the volume is a cone
radius, height = 2, 10
volume =
[tex]\int\limits^{10}_0 {\pi ( 2-\frac{y}{5} )^2} \, dy \\=[/tex]
= 13.33
2. The region ∫14 0 π(196 - h^2) dh has a radius 196 - h^2, so the volume is a hemisphere
radius = 14
volume
=[tex]\int\limits^{14}_0 {\pi (196 - h^{2} )} \, dh[/tex]
=[tex]\pi (196h- \frac{h^3}{3}) |^{14}_0[/tex]
=1829.33


The correct responses are;
Part A
- Cone
- Radius and height = 2, 10
- Volume [tex]\frac{1}{3} \cdot 40 \cdot \pi[/tex] ≈ 40.89
Part B
- Hemisphere
- Radius = 14
- Volume = [tex]\frac{2}{3}\cdot 2744 \cdot \pi \approx 5747.02 [/tex]
Methods used to obtain the above values
A. The given integral is presented as follows;
[tex]\displaystyle \mathbf{ \int\limits^{10}_0 {\pi \cdot \left(2 - \frac{y}{5} \right)^2} \, dy }[/tex]
The expression, [tex]2 - \dfrac{y}{5} [/tex], is a linear expression and is equivalent to a linear dimension such as a radius, such that we have;
[tex]x = \mathbf{ 2 - \dfrac{y}{5} }[/tex]
At y = 0, the radius of the base is therefore;
[tex]x = r = 2 - \dfrac{0}{5} =2[/tex]
At y = 10, we have;
[tex]x = 2 - \dfrac{10}{5} = 0[/tex]
Which gives a cone with base radius, r = 2, and height where the radius, r is 0 as h = 10
Therefore;
1. Cone
2. Radius and height = 2, 10
The volume is therefore;
[tex]\displaystyle \int\limits^{10}_0 { \pi \cdot \left(2 - \frac{y}{5} } \right) \, dy = \left[-\frac{1}{75} \cdot \pi \cdot \left(10 - y\right)^3 \right]^{10}_0 = 0 - \left(-\frac{1}{75} \times \pi \times 10^3 \right) = \frac{1}{3} \cdot 40 \cdot \pi[/tex]
3. The volume is; [tex]\underline{\dfrac{1}{3} \cdot 40 \cdot \pi \approx 41.89 } [/tex]
B. The given integral is presented as follows;
[tex]\displaystyle \mathbf{ \int\limits^{14}_0 {\pi \cdot (196 - h^2)} \, dh }[/tex]
The expression, 196 - h², is similar to the expression for the x² value of
the equation of a circle given as follows;
r² = x² + y²
x² = r² - y²
Which gives;
r² = 196 = Constant
r = √(196) = 14
y² = h²
Where;
x = The length of the radius at height, y
Therefore, the given expression represents the equation of a hemisphere.
1. Hemisphere;
2. Radius = 14
The volume is given as follows;
[tex]\displaystyle \int\limits^{14}_0 {\pi \cdot \left(196 - h^2\right)} \, dh = \left[\pi \cdot \left(196 \cdot h - \frac{h^3}{3} \right) \right]^{14}_0 = \pi \times \left(196\times 14 - \frac{14^3}{3} \right) [/tex]
[tex]\pi \cdot \left(196 \times 14 - \dfrac{14^3}{3}\right) = \dfrac{5488\cdot \pi}{3} = \dfrac{2}{3} \cdot 2744\cdot \pi \approx \mathbf{ 5747.02}[/tex]
3. Volume ≈ 5,747.02
Learn more about the derivation of the volume of a solid by integration here:
https://brainly.com/question/2264237