Answer:
18.25 units
Explanation:
We are given that
The position of object A=[tex]A(t)=(3.00m/s)ti+(1.00m/s^2)t^2j[/tex]
The position of object B=[tex]B(t)=(4.00m/s)ti+(-1.00m/s^2)t^2j[/tex]
We have to find the distance between object A and object at time t=3.00 s
Substitute t=3 s
[tex]A(3)=9i+9j[/tex]
[tex]B(3)=12i-9j[/tex]
The distance between A and B
[tex]A(3)-B(3)=9i+9j-12i+9j=-3i+18j[/tex]
The magnitude of distance between A and B
[tex]\mid r\mid=\sqrt{(-3)^2+(18)^2}=18.25 units[/tex]
Using the formula magnitude of position vector
r=xi+yj+zk
[tex]\mid r\mid=\sqrt{x^2+y^2+z^2}[/tex]