Respuesta :

Answer:

  • y = -2

Explanation:

The function is:

      [tex]\dfrac{-2x^2+3x+6}{x^2+1}[/tex]

The horizontal asymptote is the value of the function when x grows indefinetly, if that value is a constant.

Find the limit when x approaches ± ∞.

     [tex]\lim_{x \to \pm \infty} \dfrac{-2x^2+3x+6}{x^2+1}[/tex]

Divide both numerator and denominator by x²

         [tex]\lim_{x \to \pm \infty} \dfrac{-2+3/x+6/x^2}{1+1/x^2}[/tex]

As x approaches ±∞, 3/x, 6/x², and 1/x² approach 0.

Thus the result is:

                     [tex]\lim_{x \to \pm \infty} \dfrac{-2+3/x+6/x^2}{1+1/x^2}=\dfrac{-2}{1}=-2\\\\\\f(x)=-2\\\\y=-2[/tex]

The horizontal asymptote is y = - 2.