Let A→=(150iˆ+270jˆ) mm , B→=(300iˆ−450jˆ) mm , and C→=(−100iˆ−250jˆ) mm . Find scalars r and s, if possible, such that R→=rA→+sB→+C→ has zero x and y components.

Respuesta :

Answer: r = 0.8081; s = -0.07071

Explanation:

A = (150i + 270j) mm

B = (300i - 450j) mm

C = (-100i - 250j) mm

R = rA + sB + C = 0i + 0j

R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j

R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j

Equating the i and j components;

150r + 300s - 100 = 0

270r - 450s - 250 = 0

150r + 300s = 100

270r - 450s = 250

solving simultaneously,

r = 0.8081 and s = -0.07071

QED!