contestada

If the resultant force is directed along the boom from point A towards O, determine the values of x and z for the coordinates of point C. Set FB = 1420 N and FC = 2470 N ?

Respuesta :

Answer:

z = 1.547725 m

x = -1.0318 m

Explanation:

Given:

- FB = 1420 N

- FC = 2470  N

- load P = 1500 N      (diagram)

- OA = < 0 , 6 , 0 >     (diagram)

- OB = < -2 , 0 , 3 >    (diagram)

- vec(R) = < 0 , -1 , 0 >

Find:

The x and z components of point C

Solution:

- Compute unit vectors AB and AC

                    vec (AB) = -OA + OB = -<0 , 6 , 0> + <-2 , 0 , 3 > = < -2 , -6 , 3 >

                    vec (AC) = -OA + OC = -<0 , 6 , 0> + <x , 0 , z > = < x , 6 , z >

                    mag (AB) = sqrt(2^2 + 6^2 + 3^2) = 7

                    mag (AC) = sqrt(x^2 + 6^2 + z^2) = sqrt(x^2 + 36 + z^2)

                    unit (AB) = < -2 / 7 , -6 / 7 , 3 / 7 >

                    unit (AC) = (1 / sqrt(x^2 + 36 + z^2)) < x , -6 , z >

- Compute Force vectors FB, FC, R and Fg:

                    FB = FB . < -2 / 7 , -6 / 7 , 3 / 7 >

                    FC = FC . (1 / sqrt(x^2 + 36 + z^2))< x , -6 , z >

                    R = R. < 0 , -1 , 0 >

                    FG = P . < 0 , 0 , -1 >

- Compute sum of forces in x and z directions:

  In x- direction:

                    - FB*2 / 7 + FC * ( x / sqrt(x^2 + 36 + z^2)) = 0    ... 1

  In z- direction:

                     FB*3 / 7 + FC * ( z / sqrt(x^2 + 36 + z^2)) = 0    .... 2

- Dividing two equations:

                     x / z = -2 / 3

                     x = -2*z / 3

- Substitute x into 2:

                     FC*( z / sqrt(36 + 13z^2/9)) = - (3*FB/7)

                     ( z / sqrt(36 + 13z^2/9)) = - (3*FB/7FC)

- Square both sides:

                      z^2 / (36 + 13z^2/9) = (9/49)*(FB/FC)^2

                      z^2 = z^2*(13/49)*(FB/FC)^2 + (324/49)*(FB/FC)^2

                      z^2*(1 - (13/49)*(FB/FC)^2) = (324/49)*(FB/FC)^2

                      z = sqrt( (324/49)*(FB/FC)^2 / (1 - (13/49)*(FB/FC)^2) )

- Compute z and x:

                     z = sqrt( (324/49)*(1420/2470)^2 / (1 - (13/49)*(1420/2470)^2) )

                     z = 1.547725 m

                     x = -1.0318 m