Write a definite integral that represents the area of the region. (Do not evaluate the integral.) y1 = x2 + 2x + 3 y2 = 2x + 12Figure:A parabola was given in the figure

Respuesta :

Answer:

[tex]A = \int\limits^3__-3}{9}-{x^{2}} \, dx = 36[/tex]

Step-by-step explanation:

The equations are:

[tex]y = x^{2} + 2x + 3[/tex]

[tex]y = 2x + 12[/tex]

The two graphs intersect when:

[tex]x^{2} + 2x + 3 = 2x + 12[/tex]

[tex]x^{2} = 0[/tex]

[tex]x_{1} = 3\\x_{2} = -3[/tex]

To find the area under the curve for the first equation:

[tex]A_{1} = \int\limits^3__-3}{x^{2} + 2x + 3} \, dx[/tex]

To find the area under the curve for the second equation:

[tex]A_{2} = \int\limits^3__-3}{2x + 12} \, dx[/tex]

To find the total area:

[tex]A = A_{2} -A_{1} = \int\limits^3__-3}{2x + 12} \, dx -\int\limits^3__-3}{x^{2} + 2x + 3} \, dx[/tex]

Simplifying the equation:

[tex]A = \int\limits^3__-3}{2x + 12}-({x^{2} + 2x + 3}) \, dx = \int\limits^3__-3}{9}-{x^{2}} \, dx[/tex]

Note: The reason the area is equal to the area two minus area one is that the line, area 2, is above the region of interest (see image).  

Ver imagen mateolara11