Respuesta :

frika

Answer:

y increases by 44.22%

Step-by-step explanation:

If y is directly proportional to cube root of x, then y can be written as

[tex]y=\sqrt[3]{x}[/tex]

if x is increased by 200%, then

old x - 100%

new X - 300%

hence,

[tex]\dfrac{x}{X}=\dfrac{100}{300}\\ \\X=3x[/tex]

and new Y is

[tex]Y=\sqrt[3]{X}=\sqrt[3]{3x}[/tex]

[tex]Y=\sqrt[3]{3}y[/tex]

Thus,

y - 100%

Y - a%

Then

[tex]\dfrac{y}{Y}=\dfrac{100}{a}[/tex]

[tex]\dfrac{y}{\sqrt[3]{3} y}=\dfrac{100}{a}\\ \\\dfrac{1}{\sqrt[3]{3}}=\dfrac{100}{a}\\ \\a=100\sqrt[3]{3}\approx 144.22\%[/tex]

y increases by 44.22%