Respuesta :
Answer: The new pressure of CO is 0.09 atm
Explanation:
For the given chemical reaction:
[tex]CO(g)+Cl_2(g)\rightleftharpoons COCl_2(g)[/tex]
The expression of [tex]K_p[/tex] for above equation follows:
[tex]K_p=\frac{p_{COCl_2}}{p_{CO}\times p_{Cl_2}}[/tex] .......(1)
We are given:
[tex]p_{COCl_2}=0.66atm\\p_{CO}=0.26atm\\p_{Cl_2}=0.15atm[/tex]
Putting values in above equation, we get:
[tex]K_p=\frac{0.66}{0.15\times 0.26}\\\\K_p=16.92[/tex]
Addition pressure of chlorine added = 0.39 atm
Now, the equilibrium is re-established:
[tex]CO(g)+Cl_2(g)\rightleftharpoons COCl_2(g)[/tex]
Initial: 0.26 0.15 0.66
At eqllm: 0.26-x 0.54 0.66+x
Putting values in expression 1, we get:
[tex]16.92=\frac{(0.66+x)}{(0.26-x)\times 0.54}\\\\x=0.17[/tex]
So, new pressure of CO = 0.26 - x = (0.26 - 0.17) = 0.09 atm
Hence, the new pressure of CO is 0.09 atm
The pressure of CO when the system returns to equilibrium is 0.09 atm.
How to calculate final pressure in equilibrium?
To calculate the pressure, first, calculate the equilibrium constant will respect to atmospheric pressure.
The reaction,
CO(g) + Cl₂(g)⇌ COCl₂(g)
The equilibrium constant for the reaction,
[tex]K_p = \dfrac {P_{COCl_2}}{P_{CO}\times P_{Cl_2}}[/tex]
Put the values in the formula,
[tex]K_p = \dfrac {0.66}{0.15\times 0.26}\\\\K_p = 16.92 \rm \ atm[/tex]
After additional pressure of 0.39 atm of Chlorine, equilibrium will be re-established,
[tex]16.92 = \dfrac {0.66+x}{0.26-x\times0.54 }\\\\x=0.17[/tex]
Theus the final pressure of CO,
[tex]P_{CO}' = 0.26-0.17\\\\P_{CO}' = 0.09[/tex]
Therefore, the pressure of CO when the system returns to equilibrium is 0.09 atm.
Learn more about the equilibrium constant :
https://brainly.com/question/1901936