Answer:
Therefore,
[tex]6r-r++(15-r)+23-6 = -3r+137[/tex] i.e
[tex]6r-r+8(15-r)+23-6[/tex] and
[tex]-3r+137[/tex] are Equivalent .
Step-by-step explanation:
To Check:
[tex]6r-r+8(15-r)+23-6[/tex] and
[tex]-3r+137[/tex] is Equivalent or Not
Solution:
Consider,
[tex]6r-r+8(15-r)+23-6[/tex]
Step 1 . Apply Distributive Property , A(B+C)=AB+AC we get
[tex]6r-r+8\times 15-8\times r+23-6[/tex]
[tex]6r-r+120-8r+23-6[/tex]
Step 2 . Combining Like Terms i.e r terms and the numbers we get
[tex]6r-r-8r+120+23-6[/tex]
[tex]-3r+137[/tex]
Which is Equivalent to the given expression
[tex]-3r+137[/tex]
Therefore,
[tex]6r-r+8(15-r)+23-6= -3r+137[/tex] i.e
[tex]6r-r+8(15-r)+23-6[/tex] and
[tex]-3r+137[/tex] ..........are Equivalent .