Answer:
The period of oscillation is 1.33 sec.
Explanation:
Given that,
Mass = 275.0 g
Suppose value of spring constant is 6.2 N/m.
We need to calculate the angular frequency
Using formula of angular frequency
[tex]\omega=\sqrt{\dfrac{k}{m}}[/tex]
Where, m = mass
k = spring constant
Put the value into the formula
[tex]\omega=\sqrt{\dfrac{6.2}{275.0\times10^{-3}}}[/tex]
[tex]\omega=4.74\ rad/s[/tex]
We need to calculate the period of oscillation,
Using formula of time period
[tex]T=\dfrac{2\pi}{\omega}[/tex]
Put the value into the formula
[tex]T=\dfrac{2\pi}{4.74}[/tex]
[tex]T=1.33\ sec[/tex]
Hence, The period of oscillation is 1.33 sec.