The distance covered is 0.98 m
Explanation:
Newton's second law states that the force applied on the gymnast is equal to the product between its mass and its acceleration:
[tex]F=ma[/tex]
where in this case,
F = -1000 N is the force applied (negative since it is opposite to the direction of motion)
m = 40 kg is the mass
a is the acceleration
Solving for a,
[tex]a=\frac{F}{m}=\frac{-1000}{40}=-25 m/s^2[/tex]
Since the motion of the gymnast is a uniformly accelerated motion, we can now apply suvat equations:
[tex]v^2-u^2=2as[/tex]
where
v = 0 is the final velocity of the gymnast
u = 7 m/s is the initial velocity
[tex]a=-25 m/s^2[/tex] is the acceleration
s is the distance through which the gymnast moves before stopping
And solving for s,
[tex]s=\frac{v^2-u^2}{2a}=\frac{0-7^2}{2(-25)}=0.98 m[/tex]
Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly