A damped harmonic oscillator consists of a mass on a spring, with a damping force proportional to the speed of the block. If the spring constant is 350 N/m, the mass of the block is 240 g, the damping constant is 0.41 kg/s, and the block is displaced 7.5 cm from its equilibrium position and then released, what is its kinetic energy after one cycle?

Respuesta :

Answer:

[tex] KE=0.7341\ J[/tex]

Explanation:

Given:

  • spring constant, [tex]k=350\ N.m^{-1}[/tex]
  • mass of the block attached, [tex]m=0.24\ kg[/tex]
  • damping constant, [tex]b=0.41\ kg.s^{-1}[/tex]
  • amplitude of oscillation, [tex]A=0.075\ m[/tex]

Now the frequency of damped oscillation is given as:

[tex]\omega'=\sqrt{\frac{k}{m} -\frac{b^2}{4m^2} }[/tex]

[tex]\omega'=\sqrt{\frac{350}{0.24} -\frac{0.41^2}{4\times 0.24^2} }[/tex]

[tex]\omega'=38.1786\ rad.s^{-1}[/tex]

Now time period of one oscillation:

[tex]T=\frac{2\pi}{\omega'}[/tex]

[tex]T=\frac{2\pi}{38.1786}[/tex]

[tex]T=0.1646\ s[/tex]

We know the equation of motion for the damped harmonic motion of a mass attached to a spring is given as:

[tex]x=A.e^{-(b.t/2m)}.cos\ \omega'.t[/tex] ........................(1)

From above we find the position of the mass:

[tex]x=0.075\times e^{-(0.41\times 0.1646)/(2\times 0.24)}\times cos\ (38.1786\times 0.1646)[/tex]

[tex]x=0.06477\ m[/tex] is the position after 1 cycle.

So, the Kinetic energy can be given as:

[tex]KE=\frac{1}{2} k.x^2[/tex]

[tex]KE=0.5\times 350\times 0.06477^2[/tex]

[tex] KE=0.7341\ J[/tex]