Answer:
[tex]x=4e^{t}\\y =8e^{t}+5[/tex]
Step-by-step explanation:
Given that
[tex]F = x\hat{i}+2x\hat{j}[/tex] --- (1)
with initial conditions
x(0) = 4 ; y(0) = 5
from given eq (1)
[tex]x'(t)=x\\\frac{1}{x}dx=dt\\ln[x]=t+c_{1}\\x=Ce^{t}[/tex]
using initial condition at t = 0, x = 4
[tex]4=Ce^{0}\\C=4[/tex]
[tex]x=4e^{t}[/tex] ---- (2)
[tex]y'(t)=2x\\y =2xt+B\\[/tex]
Using initial conditions:
[tex]y =2xt+B[/tex]
⇒B = 5
[tex]y =2(4e^{t})t+5\\y =8e^{t}+5[/tex]