Respuesta :

[tex]\boxed{a_{n}=-3+8(n-1)}[/tex]

Explanation:

The explicit formula for the general nth term of the arithmetic sequence is given by:

[tex]a_{n}=a_{1}+d(n-1) \\ \\ \\ Where: \\ \\ a_{n}:nth \ term \\ \\ n:Number \ of \ terms \\ \\ a_{1}:First \ term \\ \\ d:common \ difference[/tex]

Here we know that:

[tex]a_{1}=-3 \\ \\ a_{10}=69[/tex]

So, our goal is to find the common difference substituting into the formula:

[tex]a_{10}=a_{1}+d(10-1) \\ \\ 69=-3+d(9) \\ \\ Solving \ for \ d: \\ \\ 9d=69+3 \\ \\ 9d=72 \\ \\ d=8[/tex]

Finally, we can write the explicit formula as:

[tex]\boxed{a_{n}=-3+8(n-1)}[/tex]

Learn more:

Geometric series: https://brainly.com/question/1509142

#LearnWithBrainly