Respuesta :

Answer:

Function [tex]f(x)[/tex] is shifted 1 unit left and 1 unit up.

[tex]f(x)\rightarrow f(x+1)+1[/tex]

Transformed function [tex]f(x+1)+1=\log(x+1)+1[/tex]

Step-by-step explanation:

Given:

Red graph (Parent function):

[tex]f(x)=\log(x)[/tex]

Blue graph (Transformed function)

From the graph we can see that the red graph is shifted 1 units left and 1 units up.

Translation Rules:

[tex]f(x)\rightarrow f(x+c)[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the left.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the right.

[tex]f(x)\rightarrow f(x)+c[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the up.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the down.

Applying the rules to [tex]f(x)[/tex]

The transformation statement is thus given by:

[tex]f(x)\rightarrow f(x+1)+1[/tex]

As function [tex]f(x)[/tex] is shifted 1 unit left and 1 unit up.

Transformed function is given by:

[tex]f(x+1)+1=\log(x+1)+1[/tex]