Answer:
121 Joules
6.16717 m
Explanation:
m = Mass of the rocket = 2 kg
k = Spring constant = 800 N/m
x = Compression of spring = 0.55 m
Here, the kinetic energy of the spring and rocket will balance each other
[tex]\frac{1}{2}mu^2=\frac{1}{2}kx^2\\\Rightarrow u=\sqrt{\frac{kx^2}{m}}\\\Rightarrow u=\sqrt{\frac{800\times 0.55^2}{2}}\\\Rightarrow u=11\ m/s[/tex]
The initial velocity of the rocket is 11 m/s = u.
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² = g
[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{0^2-11^2}{2\times -9.81}\\\Rightarrow s=6.16717\ m[/tex]
The maximum height of the rocket will be 6.16717 m
Potential energy is given by
[tex]P=mgh\\\Rightarrow P=2\times 9.81\times \frac{0^2-11^2}{2\times -9.81}\\\Rightarrow P=121\ J[/tex]
The potential energy of the rocket at the maximum height will be 121 Joules