Respuesta :

Answer:

The solutions are [tex]x_{1}=2\ and\ x_{2}=0.5[/tex].

Step-by-step explanation:

Given:

[tex]2x^{2} -5x+2=0[/tex]

Now, to solve by using quadratic formula:

[tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

Here [tex]a=2,b=-5\ and\ c=2[/tex]

[tex]x=\frac{-(-5)\pm \sqrt{(-5)^{2}-4\times 2\times 2}}{2\times 2}[/tex]

Now, here we will take either [tex]x=\frac{-(-5)+\sqrt{25-16}}{4}[/tex] and then [tex]x=\frac{-(-5)-\sqrt{25-16}}{4}[/tex].

[tex]x=\frac{-(-5)+\sqrt{25-16}}{4}[/tex]        [tex]x=\frac{-(-5)-\sqrt{25-16}}{4}[/tex]

[tex]x=\frac{5+\sqrt{9}}{4}[/tex]               [tex]x=\frac{5-\sqrt{9}}{4}[/tex]

[tex]x=\frac{5+3}{4}[/tex]                         [tex]x=\frac{5-3}{4}[/tex]

[tex]x=\frac{8}{4}[/tex]                               [tex]x=\frac{2}{4}[/tex]

[tex]x_{1}=2[/tex]                                  [tex]x_{2}=\frac{1}{2}=0.5[/tex]

Therefore, the solutions are [tex]x_{1}=2\ and\ x_{2}=0.5[/tex].