Respuesta :

Answer:

m∠NQP=74°

Step-by-step explanation:

we know that

The measure of the interior angles in a triangle must be equal to 180 degrees

In this problem

In the triangle NPQ

m∠N+m∠P+m∠Q=180°

we have

m∠N=(2x)°

m∠P=(34)°

m∠Q=(2x+2)°

substitute the values

[tex](2x)\°+(34)\°+(2x+2)\°=180\°[/tex]

solve for x

[tex](4x+36)\°=180\°[/tex]

[tex]4x=180-36[/tex]

[tex]4x=144[/tex]

[tex]x=36[/tex]

Find the measure of angle NQP

we know that

m∠NQP=m∠Q=(2x+2)°

substitute the value of x

m∠NQP=(2(36)+2)=74°