Respuesta :
Answer: The correct option is (B) 1.1, -9.1.
Step-by-step explanation: We are given to solve the following quadratic equation by the method of completing the square.
[tex]x^2+8x=10~~~~~~~~~~~~~~~~(i)[/tex]
In completing the square method, we need to make left hand side of the above given equation as a perfect square trinomial.
From equation (i), we have
[tex]x^2+8x=10\\\\\Rightarrow x^2+2\times x\times 4+4^2=10+4^2\\\\\Rightarrow (x+4)^2=10+16\\\\\Rightarrow (x+4)^2=26\\\\\Rightarrow x+4=\pm\sqrt{26}\\\\\Rightarrow x=-4\pm \sqrt{26}\\\\\Rightarrow x=-4\pm 5.09\\\\\Rightarrow x=-4+5.09,~~~~~x=-4-5.09\\\\\Rightarrow x=1.09,~~~~~~~~~\Rightarrow x=-9.09.[/tex]
Rounding to the nearest tenth, we get
[tex]x=1.1,~~-9.1.[/tex]
Thus, the required solution is x = 1.1, -9.1.
Option (B) is CORRECT.