Answer:
A ) Capacity of the bucket = 3.441 liters
B ) Curved surface area of the bucket = 53.38 cm²
Step-by-step explanation:
Given in question as,
Diameter (D) of top of bucket = 20 cm , So Radius ( R ) = [tex]\frac{D}{2}[/tex] = 10 cm
Diameter (d) of bottom of bucket = 14 cm , So r = [tex]\frac{14}{2}[/tex] = 7 cm
Depth of bucket = 15 cm
So, from given values it is clear that bucket shape is of FRUSTUM
A ) From the above data , the volume of frustum is calculated
So,Volume of frustum = [tex]\frac{1}{3}[/tex] × [tex]\pi[/tex] × h ×( R² + r² +R ×r )
i,e Volume = [tex]\frac{1}{3}[/tex] × [tex]\pi[/tex] × 15 ×( 10² + 7² + 10×7 )
So, Volume = [tex]\frac{110}{7}[/tex] × 219 = 3441.42 cm³ = 3.441 liters
Now covert this value in liters
∵ 1 cm³ = 0.001 liter
So, 3441042 cm³ = 3.441 liters
B) Curved surface Area = [tex]\pi[/tex] (R + r)
CSA = [tex]\pi[/tex] ( 10 + 7)
CSA = 3.14 × 17 = 53.38 cm²
Hence The capacity of frustum is 3.441 liters and The curved surface area = 53.38 cm² Answer