Answer:
The acceleration of the plane and the time required to reach this speed is (a)= 7.5 [tex]m/sec^2[/tex] and time(t) = 20 seconds
Explanation:
Given data Initial velocity [tex](V_i)[/tex] = 0
Final velocity ([tex]V_f[/tex]) = 150 m/second
Distance (d) = 1500 m
We have the formula, [tex]$\mathrm{V}_{\mathrm{f}}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 \mathrm{ad}$[/tex]
which gives [tex]150^2[/tex] = 0+2a(1500)
22500 = 3000 a
acceleration (a) = 7.5 [tex]m/s^2[/tex]
[tex]$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\mathrm{at}$[/tex]
150 = 7.5 t
t= 150/7.5 = 20
t = 20 seconds.