Respuesta :
Answer:
[tex]K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K[/tex]
Explanation:
Generally, thermal resistance for conduction heat transfer in a sphere.
[tex]R_{cond} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi K}}[/tex]
Where [tex]R_{cond}[/tex] is the thermal resistance for conduction, K is the thermal conductivity of the material, [tex]r_{i}[/tex] is the inner radius of the sphere, and [tex]r_{o}[/tex] is the outer radius of the sphere.
The surface area of sphere, [tex]A_{s}[/tex] is given by
[tex]A_{s}=4\pi {r^2}[/tex]
For aluminum sphere, the thermal resistance for conductive heat transfer is given by
Calculate the thermal resistance for conductive heat transfer through the aluminum sphere.
[tex]R_{cond,s{\rm{ - 1}}} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}}[/tex]
Where [tex]K_{Al}[/tex] is aluminum’s thermal conductivity at [tex]T_{s[/tex]}
Thermal resistance for conductive heat transfer through the insulation.
[tex]R_{cond,1{\rm{ - 2}}} = \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}}[/tex]
Thermal resistance for convection is given by
[tex]R_{conv} = \frac{1}{{hA}}[/tex]
Where h is convective heat transfer coefficient, [tex]R_{conv}[/tex] is thermal resistance for convection and A is the cross-sectional area normal to the direction of flow of heat energy
Thermal resistance for convective heat transfer in-between the outer surface of the insulation and the ambient air.
[tex]R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h{A_s}}}[/tex]
Where h represents convective heat transfer coefficient at the outer surface of the insulation. Since [tex]A_{s}[/tex] is already defined, substituting it into the above formula yields
[tex]R_{conv,2{\rm{ - }}\infty } = \frac{1}{{h\left( {4\pi {r^2}} \right)}} [/tex]
To obtain radial distance of the outer surface of the insulation from the center of the sphere.
[tex]r = r_{o} + t[/tex] where t is thickness of insulation
r=0.21+0.15=0.36m
Total thermal resistance
[tex]R_{eq} = {R_{cond,s{\rm{ - 1}}}} + {R_{cond,1{\rm{ - 2}}}} +{R_{conv,2{\rm{ - }}\infty }}[/tex]
Where [tex]R_{eq}[/tex] is total thermal resistance
[tex]R_{eq} = \frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}} [/tex]
Consider the thermal conductivity of aluminum at temperature [tex]T_{s}[/tex] as 234W/m.K
Rate of heat transfer for the given process
[tex]\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{{R_{eq}}}}[/tex]
Where [tex]\dot Q_{s - \infty }[/tex]} is the steady state heat transfer rate in-between the inner surface of the sphere and the ambient air.
Substituting [tex]\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right) [/tex] for [tex]R_{eq}[/tex] we obtain
[tex]\dot Q_{s - \infty } = \frac{{{T_s} - {T_\infty }}}{{\left( {\frac{{\left( {1/{r_i}} \right) - \left( {1/{r_o}} \right)}}{{4\pi {K_{Al}}}} + \frac{{\left( {1/{r_o}} \right) - \left( {1/r} \right)}}{{4\pi {K_{ins}}}} + \frac{1}{{h\left( {4\pi {r^2}} \right)}}} \right)}} [/tex]
[tex]\begin{array}{l}\\80{\rm{ W}} = \frac{{250{\rm{ }}^\circ {\rm{C}} - 20{\rm{ }}^\circ {\rm{C}}}}{{\left( {\frac{{\left( {\frac{1}{{0.18{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.21{\rm{ m}}}}} \right)}}{{4\pi \left( {234{\rm{ W/m}} \cdot {\rm{K}}} \right)}} + \frac{1}{{30{\rm{ W/}}{{\rm{m}}^2} \cdot {\rm{K}}\left( {4\pi {{\left( {0.36{\rm{ m}}} \right)}^2}} \right)}}\frac{{\left( {\frac{1}{{0.21{\rm{ m}}}}} \right) - \left( {\frac{1}{{0.36{\rm{ m}}}}} \right)}}{{4\pi {K_{ins}}}} + } \right)}}\\\\80{\rm{ W}}\left( {{\rm{0}}{\rm{0.020737 K/W}} + \frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}}} \right) = 230{\rm{ K}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = \frac{{230{\rm{ K}}}}{{80{\rm{ W}}}} - {\rm{0}}{\rm{0.020737 K/W}}\\\\\frac{{{\rm{0}}{\rm{0.157892/m}}}}{{{K_{ins}}}} = {\rm{2}}{\rm{.854263 K/W}}\\\end{array}[/tex]
[tex]K_{ins}=\frac {0.157892}{2.854263}=0.055318 W/m.K[/tex]