Answer:
The 95% confidence interval is (29.54 - 53.46}
Step-by-step explanation:
given data:
[tex]\hat X = 41.5[/tex]
Se = 6.1
n = 755
a) best estimate [tex]\hat x = 41.5[/tex]
b) at 95% confidence interval
[tex]\alpha = 1- 0.95 = 0.05[/tex]
[tex]\alpha /2 = 0.025[/tex]
[tex]z_{\alpha/2} = z_{0.025} = 1.96[/tex]
at 95% confidence interval for [/tex]\mu[/tex]
[tex]\hat x \pm z_{\alpha /2} \times Se[/tex]
[tex]41.5 \pm 1.96\times 6.1[/tex]
[tex]41.5 \pm 11.96[/tex]
The 95% confidence interval is (29.54 - 53.46}