Respuesta :

Answer with Step-by-step explanation:

Since we have given quadratic expressions in the form of

[tex]a^2-b^2[/tex]

which is equal to [tex](a+b)(a-b)[/tex]

a) z^2 + 4i = [tex](z-2i\sqrt{i})(z+2i\sqrt{i})[/tex]

b) z^2 + 4 = [tex](z-2i)(z+2i)[/tex]

c) z^2 − 4 = [tex](z-2)(z+2)[/tex]

d) z^2 − 4i =  [tex](z+2\sqrt{i})(z-2\sqrt{i})[/tex]

Since a) and b) contains complex number so, it splits into complex linear factors.