Respuesta :

Answer:

[tex]x=\pm \sqrt{\frac{y+2}{y-1}}[/tex]

y can take on values in:

[tex](-\infty,-2] \cup (1,\infty)[/tex]

Step-by-step explanation:

Hopefully this is the right equation:

[tex]y=\frac{x^2+2}{x^2-1}[/tex].

Multiply both sides by [tex]x^2-1[/tex]:

[tex]y(x^2-1)=\frac{x^2+2}{x^2-1}(x^2-1)[/tex]

[tex]y(x^2-1)=x^2+2[/tex]

Distribute:

[tex]yx^2-y=x^2+2[/tex]

Put x terms on one side together and non-x terms on opposite side.

Add y on both sides

and subtract x^2 on both sides:

[tex]yx^2-x^2=y+2[/tex]

Factor:

[tex]x^2(y-1)=y+2[/tex]

Divide both sides by (y-1):

[tex]x^2=\frac{y+2}{y-1}[/tex]

Now square root both sides:

[tex]x=\pm \sqrt{\frac{y+2}{y-1}}[/tex]

y cannot be 1 because we don't want to divide by 0.

Now we also need to find when (y+2)/(y-1) is positive or zero because we can't square root negative values if we intend to have just real solutions.

The fraction is zero when y=-2 because that will give us 0 on top.

I'm going to draw a number line and test which intervals gives us positive values for our expression under the square root.

--------(-2)-------(1)----------

Plugging in -3 gives us (-3+2)/(-3-1)=(-1)/(-4)=1/4 so anything before -2 works.

Let's try 0: (0+2)/(0-1)=-2 so nothing between -2 and 1 will work.

Let's try it for 2: (2+2)/(2-1)=4/1=4 so anything after 1 will work.

So y can take on values in:

[tex](-\infty,-2] \cup (1,\infty)[/tex]