Respuesta :

[tex] \sin \alpha ( \csc \alpha - \sin \alpha )[/tex]

but

[tex] \csc\alpha = \frac{1}{ \sin \alpha } [/tex]

now substituting it in the formula

[tex] \sin \alpha ( \frac{1}{ \sin \alpha } - \sin \alpha )[/tex]

now multiplying with the sine alpha throughout the equation

[tex] = \frac{ \sin \alpha }{ \sin \alpha } - {sin}^{2} \alpha [/tex]

[tex] = 1 - {sin}^{2} \alpha [/tex]

but mathematically

[tex]1 - {sin}^{2} \alpha = {cos}^{2} \alpha [/tex]

hence proved.