The value of an investment A (in dollars) after t years is given by the function A(t) = A0ekt. If it takes 10 years for an investment of $1,000 to triple, how many years will it take for the investment to be $9,000? Simplify your answer completely.

Respuesta :

Answer:

20 years.

Step-by-step explanation:

We have been given a formula [tex]A(t)=A_0\cdot e^{kt}[/tex], which represents the  value of an investment A (in dollars) after t years.

Substitute the given values:

[tex]\$3,000=\$1,000\cdot e^{k*10}[/tex]

Let us solve for k.

[tex]\frac{\$3,000}{\$1,000}=\frac{\$1,000\cdot e^{k*10}}{\$1,000}[/tex]

[tex]3=e^{k*10}[/tex]

Take natural log of both sides:

[tex]\text{ln}(3)=\text{ln}(e^{k*10})[/tex]

Using property [tex]\text{ln}(a^b)=b\cdot \text{ln}(a)[/tex], we will get:

[tex]\text{ln}(3)=10k\cdot\text{ln}(e)[/tex]

We know that [tex]\text{ln}(e)=1[/tex], so

[tex]\text{ln}(3)=10k\cdot 1[/tex]

[tex]\text{ln}(3)=10k[/tex]

[tex]\frac{\text{ln}(3)}{10}=\frac{10k}{10}[/tex]

[tex]\frac{\text{ln}(3)}{10}=k[/tex]

[tex]\$9,000=\$1,000\cdot e^{\frac{\text{ln}(3)}{10}*t}[/tex]

Dividing both sides by 1000, we will get:

[tex]9=e^{\frac{\text{ln}(3)}{10}*t}[/tex]

Take natural log of both sides:

[tex]\text{ln}(9)=\text{ln}(e^{\frac{\text{ln}(3)}{10}*t)[/tex]

[tex]\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot\text{ln}(e)[/tex]

[tex]\text{ln}(9)=\frac{\text{ln}(3)}{10}*t\cdot1[/tex]

[tex]10*\text{ln}(9)=10*\frac{\text{ln}(3)}{10}*t[/tex]

[tex]10\text{ln}(9)=\text{ln}(3)*t[/tex]

[tex]10\text{ln}(3^2)=\text{ln}(3)*t[/tex]

[tex]2\cdot 10\text{ln}(3)=\text{ln}(3)*t[/tex]

[tex]20\text{ln}(3)=\text{ln}(3)*t[/tex]

Divide both sides by [tex]\text{ln}(3)[/tex]:

[tex]\frac{20\text{ln}(3)}{\text{ln}(3)}=\frac{\text{ln}(3)*t}{\text{ln}(3)}[/tex]

[tex]20=t[/tex]

Therefore, it will take 20 years for the investment to be $9,000.