Respuesta :
Answer:
EMF, E = 0.061 volts
Explanation:
It is given that,
Number of loops in a solenoid, N = 625
Area of the loop, [tex]A=4.34\times 10^{-4}\ m^2[/tex]
Magnetic field, B = 0.225 T
It is rotated until it is perpendicular to the field for 0.166 seconds. We need to find the EMF generated in the solenoid. The induced emf is given by :
[tex]E=\dfrac{-d\phi}{dt}[/tex]
[tex]E=\dfrac{-d(NBA\ cos\theta)}{dt}[/tex]
[tex]E=NBA\ sin\theta[/tex]
When the solenoid is parallel, [tex]\theta=0[/tex], E = 0
When the solenoid is perpendicular to the field, E = NBA
[tex]\theta=90[/tex]
[tex]E=N\times B\times A[/tex]
[tex]E=625\times 0.225\times 4.34\times 10^{-4}[/tex]
E = 0.061 volts
So, the generated EMF is 0.061 volts. Hence, this is the required solution.
Answer: -0.368
Explanation:
I = BAcos
I(1) = (.225) (4.34*10^-4) cos 0= 9.77*10^-5
I(2)= (.225) (4.34*10^-4) cos 90= 0
E = N • I(2) - I(1) / t
= ((625)(0-9.77*10^-5))/(.166)
= -0.3678 ~ -0.368