Respuesta :

Answer:

625

Explanation:

So this says the following:

A term is equal to 5 times the previous term.

We are given the 0th- term is 5.

The first term is 5(5)=25.

The second term would be 5(25)=125.

The third term would be 5(125)=625.

So f(3)=625.

If you didn't like that explanation, you can find f(3), by first finding f(1) then f(2) using the equation given as is without making the interpretation I did above.

[tex]f(n)=5 \cdot f(n-1)[/tex] ; plug in 1 for [tex]n[/tex]:

[tex]f(1)=5 \cdot f(1-1)[/tex]

[tex]f(1)=5 \cdot f(0)[/tex]

[tex]f(1)=5 \cdot 5[/tex]

[tex]f(1)=25[/tex]

[tex]f(n)=5 \cdot f(n-1)[/tex] ; plug in 2 for [tex]n[/tex]:

[tex]f(2)=5 \cdot f(2-1)[/tex]

[tex]f(2)=5 \cdot f(1)[/tex]

[tex]f(2)=5 \cdot 25[/tex]

[tex]f(2)=125[/tex]

[tex]f(n)=5 \cdot f(n-1)[/tex] ; plug in 3 for [tex]n[/tex]:

[tex]f(3)=5 \cdot f(3-1)[/tex]

[tex]f(3)=5 \cdot f(2)[/tex]

[tex]f(3)=5 \cdot 125[/tex]

[tex]f(3)=625[/tex]

Answer:

[tex]\displaystyle 625[/tex]

Explanation:

All results are quintupled the previous terms:

[tex]\displaystyle 5 = f(0) \\ 25 = f(1) \\ 125 = f(2) \\ 625 = f(3)[/tex]

I am joyous to assist you anytime.