Explanation:
It is given that,
Wavelength, [tex]\lambda_1=500\ nm=5\times 10^{-7}\ m[/tex]
Wavelength, [tex]\lambda_2=500.10\ nm=5.001\times 10^{-7}\ m[/tex]
We need to find the frequencies from corresponding wavelengths. The frequency of the light is given by :
[tex]f=\dfrac{c}{\lambda}[/tex]
c is the speed of light
Frequency 1,
[tex]f_1=\dfrac{c}{\lambda_1}[/tex]
[tex]f_1=\dfrac{3\times 10^8\ m/s}{5\times 10^{-7}\ m}[/tex]
[tex]f_1=6\times 10^{14}\ Hz[/tex]
Frequency 2,
[tex]f_2=\dfrac{c}{\lambda_2}[/tex]
[tex]f_1=\dfrac{3\times 10^8\ m/s}{5.001\times 10^{-7}\ m}[/tex]
[tex]f_1=5.99\times 10^{14}\ Hz[/tex]
Hence, this is the required solution.