Answer:
Amplitude = 2; period = two times pi over three; phase shift: x equals pi over three
Step-by-step explanation:
The given function is [tex]f(x)=-2 \sin(3x-\pi)-1[/tex]
Comparing to [tex]f(x)=a \sin(bx-c)+d[/tex], we have a=-2 , b=3, [tex]c=\pi[/tex] and d=-1.
The amplitude is [tex]|a|[/tex].
This implies that amplitude is [tex]|-2|=2[/tex]
The period is [tex]\frac{2\pi}{|b|}[/tex]
This implies period is [tex]\frac{2\pi}{3}[/tex]
The phase shift is [tex]x=\frac{c}{b}[/tex]
This implies that phase shift is [tex]x=\frac{\pi}{3}[/tex]