If the rate of energy loss for a 2.5 MeV proton in graphite of density 2.25 102 kg/m is 32.3 GeV/m, estimate the rate of energy loss in gaseous nitrogen of density 1.29 kg/m?

Respuesta :

Answer:185.18 meV/m

Explanation:

Energy loss for charge particle is given by

\frac{\mathrm{d} E}{\mathrm{d} x}\propto \frac{\rho Zz^2}{A}

where

\frac{\mathrm{d} E}{\mathrm{d} x} Energy loss per unit length

\rho density

Z atomic number

A atomic mass

z charge of incident particle(for proton it is 1)

For graphite

Z=6

A=12

For gaseous nitrogen

Z=7

A=14

[tex]\frac{\mathrm{d} E}{\mathrm{d} x}=\frac{k\rho Z}{A}[/tex]

For graphite

[tex]32.3=\frac{k\times 2.25\times 10^2\times 6}{12}--1[/tex]

[tex]E'=\frac{k\times 1.29\times 7}{14}---2[/tex]

Divide 1 and 2

[tex]\frac{32.3}{E'}=\frac{2.25\times 10^2\times 6\times 14}{12\times 7\times 1.29}[/tex]

E'=185.18 MeV/m