contestada

At what frequency would the wavelength of sound in air be equal to the mean free path of oxygen molecules at 1.5 atm pressure and -0.77°C? Take the diameter of an oxygen molecule to be 8.4 x 10^-8 cm and the speed of sound to be 330 m/s.

Respuesta :

Answer:

[tex]\vartheta = 41.31 GHz[/tex]

Given:

Pressure, [tex]P_{O} = 1.5 atm = 1.5\times 10^{5} Pa[/tex]

Temperature, T = [tex]- 0.77^{\circ}[/tex] = 273 + (- 0.77) = 272.23 K

Diameter of oxygen molecule, [tex]d_{O} = 8.4\times 10^{- 8} cm = 8.4\times 10^{-10} m[/tex]

Speed of sound, v = 330 m/s

[tex]k_{B} = 1.38\times 10^{- 23} J/s[/tex]

Solution:

Mean free path of oxygen is given by:

[tex]L_{O} = \frac{k_{B}T}{\sqrt{2}P_{O}\pi d_{O}^{2}}[/tex]

Now, substituting the given values in the above formula:

[tex]L_{O} = \frac{1.38\times 10^{- 23}\times 272.23}{\sqrt{2}\times 1.5\times 10^{5}\pi\times (8.4\times 10^{- 10})^{2}}[/tex]

[tex]L_{O} = 7.99\times 10^{-8} m[/tex]

Now, the frequency, [tex]\vartheta [/tex] is given by:

[tex]\vartheta = \frac{c}{\lambda}[/tex]  

Since, mean free path = wavelength = [tex]7.99\times 10^{-9} m[/tex]      

Therefore,

[tex]\vartheta = \frac{v}{L_{O}}[/tex]  

[tex]\vartheta = \frac{330}{7.99\times 10^{-8}}[/tex]  

[tex]\vartheta = 4.131\times 10^{10} Hz = 41.31 GHz[/tex]