Answer:
a) 142.98 cm b) 53.98 cm c) 1.46 kg d) 1.46 kg
Explanation:
Using the equation for the period of a simple pendulum we can answer the first 2 questions.
a) [tex]T=2\pi\sqrt\frac{l}{g}\\T^2=4\pi^2\frac{l}{g}\\l=\frac{T^2g}{4\pi^2}=\frac{(2.4s)^29.8m/s}{4\pi^2}\\l=1.42 m= 142.98 cm[/tex]
b) [tex]l=\frac{T^2g}{4\pi^2}=\frac{(2.4s)^23.7m/s}{4\pi^2}\\l=0.53 m= 53.98 cm[/tex]
Using the equation for the period of a mass-spring system we can answer the last 2 questions.
c) [tex]T=2\pi\sqrt\frac{m}{k}\\T^2=4\pi^2\frac{m}{k}\\m=\frac{T^2k}{4\pi^2}=\frac{(2.4s)^210N/m}{4\pi^2}\\l=1.46 kg[/tex]
d) [tex]T=2\pi\sqrt\frac{m}{k}\\T^2=4\pi^2\frac{m}{k}\\m=\frac{T^2k}{4\pi^2}=\frac{(2.4s)^210N/m}{4\pi^2}\\l=1.46 kg[/tex]
we can observe that the period of this system does not depend on the value of gravity.