contestada

Use the normal approximation to the binomial distribution to answer this question. Fifteen percent of all students at a large university are absent on Mondays. If a random sample of 12 names is called on a Monday, what is the probability that four students are absent?

Respuesta :

Answer: 0.1289

Step-by-step explanation:

Given : The proportion of all students at a large university are absent on Mondays. : [tex]p=0.15[/tex]

Sample size : [tex]n=12[/tex]

Mean : [tex]\mu=np=12\times0.15=1.8[/tex]

Standard deviation = [tex]\sigma=\sqrt{np(1-p)}[/tex]

[tex]\Rightarrow\ \sigma=\sqrt{12(0.15)(1-0.15)}=1.23693168769\approx1.2369[/tex]

Let x be a binomial variable.

Using the standard normal distribution table ,

[tex]P(x=4)=P(x\leq4)-P(x\leq3)[/tex]              (1)

Z score fro normal distribution:-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x=4

[tex]z=\dfrac{4-1.8}{1.2369}\approx1.78[/tex]

For x=3

[tex]z=\dfrac{3-1.8}{1.2369}\approx0.97[/tex]

Then , from (1)

[tex]P(x=4)=P(z\leq1.78)-P(z\leq0.97)\\\\=0.962462-0.8339768\approx0.1289[/tex]    

Hence, the probability that four students are absent = [tex]0.1289[/tex]