Respuesta :

Answer:

C

Step-by-step explanation:

We simply need to remember this rule shown below:

[tex]\sqrt[n]{x^b} =x^{\frac{b}{n}}[/tex]

So expression to change is  [tex]\sqrt[4]{x^5}[/tex]

By using the law, we can rewrite this as:

[tex]\sqrt[4]{x^5} =x^{\frac{5}{4}}[/tex]

Correct choice is C

Answer:

The correct option is C) X^(5/4).

Step-by-step explanation:

Consider the provided radical expression.

[tex]\sqrt[4]{x^5}[/tex]

Now we need to convert the radical expression into rational expression.

[tex]a^{\frac{m}{n}}=(\sqrt[n]{a})^m=\sqrt[n]{x^m}[/tex]

By using the above formula we can rewrite the expression as shown:

[tex]\sqrt[4]{x^5}[/tex]

[tex](\sqrt[4]{x})^5[/tex]

[tex](x)^{\frac{5}{4}}[/tex]

Hence, the required rational exponent is [tex](x)^{\frac{5}{4}}[/tex]

Thus, the correct option is C) X^(5/4).

Otras preguntas