If P(A) = 0.3, P(B) = 0.2, and P(A ∩ B) = 0.1, determine the following probabilities: a. P(A′) b. P(A ∪ B) c. P(A′ ∩ B) d. P(A ∩ B′) e. P[(A ∪ B)′] f. P(A′ ∪ B)

Respuesta :

a. [tex]P(A')=1-P(A)=\boxed{0.7}[/tex]

b. [tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)=\boxed{0.4}[/tex]

c. By the law of total probability,

[tex]P(B)=P(A\cap B)+P(A'\cap B)[/tex]

so that

[tex]P(A'\cap B)=P(B)-P(A\cap B)=\boxed{0.1}[/tex]

d. Similar to (c); we have

[tex]P(A)=P(A\cap B)+P(A\cap B')[/tex]

[tex]\implies P(A\cap B')=P(A)-P(A\cap B)=\boxed{0.2}[/tex]

e. [tex]P(A\cup B)'=1-P(A\cup B)=\boxed{0.6}[/tex]

f. By DeMorgan's law,

[tex]P(A'\cup B)=P(A\cap B')'=1-P(A\cap B')=\boxed{0.8}[/tex]