Answer:0.0206
Step-by-step explanation:
Using Binomial distribution for a sample of 20 adults
Let r denotes the no of correct answers out of 20
Probability that fewer than 6 people will guess correctly is P(r<6)
P(r<6)=P(r=0)+P(r=1)+P(r=2)+P(r=3)+P(r=4)+P(r=5)
[tex]P(r=0)=^{20}C_0\left ( 0.5\right )^{0}\left ( 0.5\right )^{20}=\left ( 0.5\right )^{20}[/tex]
[tex]P(r=1)=^{20}C_0\left ( 0.5\right )^{1}\left ( 0.5\right )^{19}=20\left ( 0.5\right )^{20}[/tex]
[tex]P(r=2)=^{20}C_0\left ( 0.5\right )^{2}\left ( 0.5\right )^{18}=190\left ( 0.5\right )^{20}[/tex]
[tex]P(r=3)=^{20}C_0\left ( 0.5\right )^{3}\left ( 0.5\right )^{17}=1140\left ( 0.5\right )^{20}[/tex]
[tex]P(r=4)=^{20}C_0\left ( 0.5\right )^{4}\left ( 0.5\right )^{16}=4845\left ( 0.5\right )^{20}[/tex]
[tex]P(r=5)=^{20}C_0\left ( 0.5\right )^{5}\left ( 0.5\right )^{15}=15,504\left ( 0.5\right )^{20}[/tex]
[tex]P(r<6)=\left ( 0.5\right )^{20}\left [ 1+20+190+1140+4845+15504\right ][/tex]
[tex]P(r<6)=\left ( 0.5\right )^{20}\times 21,700[/tex]
P(r<6)=0.02069