The lifetime of a machine part has a continuous distribution on the interval​ (0, 50​) with probability density function​ f, where​ f(x) is proportional to left parenthesis 10 plus x right parenthesis Superscript negative 2. Calculate the probability that the lifetime of the machine part is less than 13.

Respuesta :

Answer:

Probability that the lifetime of the machine part is less than 13 = 0.6782

Step-by-step explanation:

given that [tex]f(x)=(10+x)^{-2}[/tex]

Normalizing the function we get

[tex]\int_{0 }^{50}cf(x)dx=1[/tex]

[tex]\int_{0 }^{50}c(10+x)^{-2}dx=1[/tex]

[tex]\therefore a=\frac{1}{\int_{0 }^{50}(10+x)^{-2}dx}[/tex]

[tex]\therefore a=12[/tex]

[tex]P(x< 13)=\int_{0}^{13}12(10+x)^{-2}dx\\\\P(X< 13)=0.6782[/tex]