Answer:
The circumference of the sphere is [tex]C=5\pi\ cm[/tex] or [tex]C=15.7\ cm[/tex]
Step-by-step explanation:
step 1
Find the radius of the sphere
we know that the volume of the sphere is equal to
[tex]V=\frac{4}{3}\pi r^{3}[/tex]
we have
[tex]V=\frac{1,375}{21}\ cm^{3}[/tex]
substitute and solve for r
[tex]\frac{1,375}{21}=\frac{4}{3}\pi r^{3}[/tex]
assume
[tex]\pi =3.14[/tex]
[tex]r^{3}=\frac{1,375}{21}(\frac{3}{4*3.14})[/tex]
[tex]r=2.5\ cm[/tex]
step 2
Find the circumference
The circumference is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=2.5\ cm[/tex]
substitute
[tex]C=2\pi(2.5)[/tex]
[tex]C=5\pi\ cm[/tex]
assume
[tex]\pi =3.14[/tex]
[tex]C=5(3.14)=15.7\ cm[/tex]