Write two linear functions, (x) and g(x). For example, f(x) = 3x - 7 and
g(x) = -2x + 5. Then see whether Rx) - (-9(x)) is equivalent to f(x)+ g(x). Hint:
To find -9(x), just change the signs of all the terms in g(x). Discuss whether
you think your results would apply to every function.

Write two linear functions x and gx For example fx 3x 7 and gx 2x 5 Then see whether Rx 9x is equivalent to fx gx Hint To find 9x just change the signs of all t class=

Respuesta :

Answer:

And the results would apply to every fonction.

Ver imagen remixe

Answer:

[tex]f(x)-(-g(x))[/tex] is equivalent to [tex]f(x)+g(x)[/tex].

Step-by-step explanation:

Given : Functions [tex]f(x)=3x-7[/tex] and [tex]g(x)=-2x+5[/tex]

To find : [tex]f(x)-(-g(x))[/tex] is equivalent to  [tex]f(x)+g(x)[/tex] ?

Solution :

[tex]f(x)=3x-7[/tex]

[tex]g(x)=-2x+5[/tex]

[tex]-g(x)=-(-2x+5)=2x-5[/tex]

First we determine,

[tex]f(x)+g(x)=3x-7+(-2x+5)[/tex]

[tex]f(x)+g(x)=3x-7-2x+5[/tex]

[tex]f(x)+g(x)=x-2[/tex]

Now, we find

[tex]f(x)-(-g(x))=3x-7-(2x-5)[/tex]

[tex]f(x)-(-g(x))=3x-7-2x+5[/tex]

[tex]f(x)-(-g(x))=x-2[/tex]

So, [tex]f(x)-(-g(x))[/tex] is equivalent to [tex]f(x)+g(x)[/tex].