Let A = [1 9 8 6] and b = [0 4 5 3]. Find the matrix C of the linear transformation T(x) = B(A(x)). C = [].

Respuesta :

Answer:

[tex]\begin{bmatrix}45 & 31 \\ 30 & 50\end{bmatrix}[/tex]

Step-by-step explanation:

Here, the given linear transformation ( from [tex]R^2[/tex] to [tex]R^2[/tex] ),

[tex]T(x) = B(A(x))[/tex]

[tex]T(x) = ( BA )( x)[/tex]

So when we consider the standard basis both sides, then matrix representation will be BA

That is, C = BA

Given,

[tex]A = \begin{bmatrix}1 & 9 \\ 8 & 6\end{bmatrix}[/tex]

[tex]B = \begin{bmatrix}0 & 4 \\ 5 & 3\end{bmatrix}[/tex]

[tex]\implies C = \begin{bmatrix}1 & 9 \\ 8 & 6\end{bmatrix}\begin{bmatrix}0 & 4 \\ 5 & 3\end{bmatrix}[/tex]

[tex]=\begin{bmatrix}0+45 & 4+27 \\ 0+30 & 32+18\end{bmatrix}[/tex]

[tex]=\begin{bmatrix}45 & 31 \\ 30 & 50\end{bmatrix}[/tex]